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Abstract. Compositional verification is a promising ap-

proach to addressing the state explosion problem associ-

ated with model checking. One compositional technique

advocates proving properties of a system by checking

properties of its components in an assume-guarantee

style. However, the application of this technique is

difficult because it involves non-trivial human input.

This paper presents a novel framework for performing

assume-guarantee reasoning in an incremental and fully

automated fashion. To check a component against a

property, our approach generates assumptions that the

environment needs to satisfy for the property to hold.

These assumptions are then discharged on the rest of

the system. Assumptions are computed by a learning

� This paper is an extended and revised version of [10].

algorithm. They are initially approximate, but become

gradually more precise by means of counterexamples ob-

tained by model checking the component and its envi-

ronment, alternately. This iterative process may at any

stage conclude that the property is either true or false

in the system. We have implemented our approach in

the LTSA tool and discuss its application to a NASA

system.

1 Introduction

Our work is motivated by an ongoing project at NASA

Ames Research Center on the application of model

checking to the verification of autonomous software. Au-

tonomous software involves complex concurrent behav-
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iors for reacting to external stimuli without human in-

tervention. Extensive verification is a pre-requisite for

the deployment of missions that involve autonomy.

Given some formal description of a system and of a

required property, model checking automatically deter-

mines whether the property is satisfied by the system.

The limitation of the approach, referred to as the “state

explosion” problem, is the exponential relation of the

number of states in the system under analysis to the

number of components of which the state is made [28].

Model checking therefore does not scale, in general, to

systems of realistic size.

Compositional verification presents a promising way

of addressing state explosion. It advocates a “divide and

conquer” approach where properties of the system are

decomposed into properties of its components, so that if

each component satisfies its respective property, then so

does the entire system. Components are therefore model

checked separately. It is often the case, however, that

components only satisfy properties in specific contexts

(also called environments). This has given rise to the

assume-guarantee style of reasoning [25, 30].

Assume-guarantee reasoning first checks whether a

component M guarantees a property P , when it is part

of a system that satisfies an assumption A. Intuitively,

A characterizes all contexts in which the component is

expected to operate correctly. To complete the proof,

it must also be shown that the remaining components

in the system, i.e., M ’s environment, satisfy A. Several

frameworks have been proposed [9, 20, 22, 25, 30, 33] to

support this style of reasoning. However, their practical

impact has been limited because they require non-trivial

human input in defining assumptions that are strong

enough to eliminate false violations, but that also reflect

the remaining system appropriately.

In contrast, this paper presents a novel framework

for performing assume-guarantee reasoning in an incre-

mental and fully automatic fashion. Our approach iter-

ates a process based on gradually learning assumptions.

The learning process is based on queries to component

M and on counterexamples obtained by model checking

M and its environment, alternately. Each iteration may

conclude that the required property is satisfied or vio-

lated in the system analyzed. This process is guaranteed

to terminate; in fact, it converges to an assumption that

is necessary and sufficient for the property to hold in the

specific system.

Our approach has been implemented in the Labeled

Transition Systems Analyzer (LTSA) [27]. In this paper

we discuss its application to the analysis of the Executive

module of an experimental Mars Rover (K9) developed

at NASA Ames. Note that our approach relies on stan-

dard features of model checkers, and as such it can be

added in any such tool in a fairly straightforward way.

The remainder of the paper is organized as follows.

We first provide some background in Section 2, followed

by a high level description of the framework that we pro-

pose in Section 3. The algorithms that implement this
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framework are presented in Section 4. We discuss some

theoretical and practical considerations for our frame-

work in Section 5. Section 6 describes our experience

with applying our approach to the Executive of the K9

Mars Rover and Section 7 presents some ideas for ex-

tending this work. Finally, Section 8 presents related

work and Section 9 concludes the paper.

2 Background

The presentation of our approach is based on techniques

for modeling and checking concurrent programs imple-

mented in the LTSA tool [27]. The LTSA supports Com-

positional Reachability Analysis (CRA) of a software

system based on its architecture, which, in general, has a

hierarchical structure. CRA incrementally computes and

abstracts the behavior of composite components based

on the behavior of their immediate children in the hi-

erarchy [17]. The flexibility that the LTSA provides in

selecting any component in the hierarchy for analysis or

abstraction makes it ideal for experimenting with our

approach.

2.1 Labeled Transition Systems

The LTSA tool uses labeled transition systems (LTSs)

to model the behavior of communicating components in

a concurrent system. In the following, we present LTSs

and the semantics of their operators in a typical process

algebra style. However, note that our goal here is not to

define a process algebra.

Let Act be the universal set of observable actions

and let τ denote a local action unobservable to a compo-

nent’s environment. We use π to denote a special error

state, which models the fact that a safety violation has

occurred in the associated system. We require that the

error state has no outgoing transitions because we are

not interested in exploring states that follow a safety

violation.

Formally, an LTS M is a four tuple 〈Q,αM, δ, q0〉

where:

– Q is a finite non-empty set of states

– αM ⊆ Act is a set of observable actions called the

alphabet of M

– δ ⊆ Q × αM ∪ {τ} × Q is a transition relation

– q0 ∈ Q is the initial state

We use Π to denote the LTS 〈{π},Act, ∅, π〉. An LTS

M = 〈Q,αM, δ, q0〉 is non-deterministic if it contains τ -

transitions or if ∃(q, a, q′), (q, a, q′′) ∈ δ such that q′ �=

q′′. Otherwise, M is deterministic.

Consider a simple communication channel that con-

sists of two components whose LTSs are shown in Fig. 1.

Note that the initial state of all LTSs in this paper is

state 0. The Input LTS receives an input when the ac-

tion input occurs, and then sends it to the Output LTS

with action send. After some data is sent to it, Output

produces output using the action output and acknowl-
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edges that it has finished, by using the action ack. At

this point, both LTSs return to their initial states so the

process can be repeated.

2.2 Traces

A trace σ of an LTS M is a sequence of observable ac-

tions that M can perform starting at its initial state. For

example, 〈input〉 and 〈input, send〉 are both traces of

the Input LTS in Fig. 1. The set of all traces of M is

called the language of M , denoted L (M). For Σ ⊆ Act,

we use σ � Σ to denote the trace obtained by removing

from σ all occurrences of actions a /∈ Σ.

2.3 Parallel Composition

Let M = 〈Q,αM, δ, q0〉 and M ′ = 〈Q′, αM ′, δ′, q′0〉. We

say that M transits into M ′ with action a, denoted

M
a−→ M ′, if and only if (q0, a, q′0) ∈ δ and either

Q = Q′, αM = αM ′, and δ = δ′ for q′0 �= π, or, in

the special case where q′0 = π, M ′ = Π.

The parallel composition operator ‖ is a commutative

and associative operator that combines the behavior of

two components by synchronizing the actions common to

their alphabets and interleaving the remaining actions.

For example, in the parallel composition of the Input

and Output components from Fig. 1, actions send and

ack will each be synchronized.

Formally, let M1 = 〈Q1, αM1, δ
1, q1

0〉 and M2 =

〈Q2, αM2, δ
2, q2

0〉 be two LTSs. If M1 = Π or M2 = Π,

then M1 ‖ M2 = Π. Otherwise, M1 ‖ M2 is an LTS

M = 〈Q,αM, δ, q0〉, where Q = Q1 × Q2, q0 = (q1
0 , q2

0),

αM = αM1 ∪ αM2, and δ is defined with the following

transitional semantics, where a is either an observable

action or τ :

•
M1

a−→ M ′
1, a /∈ αM2

M1 ‖ M2
a−→ M ′

1 ‖ M2

•
M2

a−→ M ′
2, a /∈ αM1

M1 ‖ M2
a−→ M1 ‖ M ′

2
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•
M1

a−→ M ′
1, M2

a−→ M ′
2, a �= τ

M1 ‖ M2
a−→ M ′

1 ‖ M ′
2

2.4 Properties

We call a deterministic LTS that contains no π states a

safety LTS. A safety property is specified as a safety LTS

P , whose language L (P ) defines the set of acceptable

behaviors over αP . An LTS M satisfies P , denoted as

M |= P , if and only if ∀σ ∈ L (M) and ∀σ′ ∈ (αM ∪

αP )∗, if σ′ � αM = σ then σ′ � αP ∈ L (P ). Intuitively,

this definition requires component M to satisfy property

P irrespective of the environment in which M will be

introduced.

When checking a property P , an error LTS de-

noted Perr is created, which traps possible violations

with the π state. Formally, the error LTS of a prop-

erty P = 〈Q,αP, δ, q0〉 is Perr = 〈Q ∪ {π}, αPerr, δ
′, q0〉,

where αPerr = αP and

δ′ = δ ∪ {(q, a, π) | a ∈ αP and �q′ ∈ Q : (q, a, q′) ∈ δ}

Note that the error LTS is complete, meaning each state

other than the error state has outgoing transitions for

every action in its alphabet.

For example, the Order property shown in Fig. 2

captures a desired behavior of the communication chan-

nel shown in Fig. 1. The property comprises states 0, 1

and the transitions denoted by solid arrows. It expresses

the fact that inputs and outputs come in matched pairs,

with the input always preceding the output. The dashed

arrows illustrate the transitions to the error state that

are added to the property to obtain its error LTS.

To detect violations of property P by component M ,

the parallel composition M ‖ Perr is computed. It has

been proved that M violates P if and only if the π state

is reachable in M ‖ Perr [7]. For example, state π is not

reachable in Input ‖ Output ‖ Ordererr, so we conclude

that Input ‖ Output |= Order.

2.5 Assume-Guarantee Reasoning

In the assume-guarantee paradigm a formula is a triple

〈A〉 M 〈P 〉, where M is a component, P is a property,

and A is an assumption about M ’s environment [30].

The formula is true if whenever M is part of a system

satisfying A, then the system must also guarantee P .

The LTSA is particularly flexible in performing

assume-guarantee reasoning. Both assumptions and

properties are defined as safety LTSs1. In fact, a safety

LTS A can be used as an assumption or as a property.

To be used as an assumption for module M , A itself is

composed with M , thus playing the role of an abstrac-

tion of M ’s environment. To be used as a property to be

checked on M , A is turned into Aerr and then composed

with M .

To check an assume-guarantee formula 〈A〉 M 〈P 〉,

where both A and P are safety LTSs, the LTSA com-

putes A ‖ M ‖ Perr and checks if state π is reachable

1 Any LTS without π states can be transformed into a safety

LTS by determinization [23].
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in the composition. If it is, then 〈A〉 M 〈P 〉 is false,

otherwise it is true.

2.6 Deterministic Finite State Automata and Safety

LTSs

One of the components of our framework is a learning

algorithm that produces deterministic finite state au-

tomata (DFAs), which our framework then uses as safety

LTSs. A DFA M is a five tuple 〈Q,αM, δ, q0, F 〉 where

Q,αM, δ, and q0 are defined as for deterministic LTSs,

and F ⊆ Q is a set of accepting states.

For a DFA M and a string σ ∈ (αM)∗, we use δ(q, σ)

to denote the state that M will be in after reading σ

starting at state q. A string σ is said to be accepted by a

DFA M = 〈Q,αM, δ, q0, F 〉 if δ(q0, σ) ∈ F . The language

accepted by M , denoted L (M) is the set {σ | δ(q0, σ) ∈

F}.

The DFAs returned by the learning algorithm in our

context are complete, minimal, and prefix-closed (an au-

tomaton M is prefix-closed if L (M) is prefix-closed, i.e.,

for every σ ∈ L (M), every prefix of σ is also in L (M)).

These DFAs therefore contain a single non-accepting

state. They can easily be transformed into safety LTSs

by removing the non-accepting state, which corresponds

to state π of an error LTS, and all transitions that lead

into it.

3 Framework for Incremental Compositional

Verification

Consider the case where a system is made up of two

components, M1 and M2. As mentioned in the previous

section, a formula 〈A〉 M 〈P 〉 is true if, whenever M is

part of a system satisfying A, then the system must also

guarantee property P . The simplest compositional proof

rule shows that if 〈A〉 M1 〈P 〉 and 〈true〉 M2 〈A〉 hold,

then 〈true〉 M1 ‖ M2 〈P 〉 is true. This proof strategy

can also be expressed as an inference rule as follows:

(Step 1) 〈A〉 M1 〈P 〉

(Step 2) 〈true〉 M2 〈A〉

〈true〉 M1 ‖ M2 〈P 〉

Note that this rule is not symmetric in its use of the

two components, and does not support circularity. De-

spite its simplicity, our experience with applying com-

positional verification to several applications has shown

it to be a very useful rule in the context of checking

safety properties. For the use of the compositional rule

to be justified, the assumption must be more abstract

than M2, but still reflect M2’s behavior. Additionally, an

appropriate assumption for the rule needs to be strong

enough for M1 to satisfy P in Step 1. Developing such

an assumption is a non-trivial process.

To obtain appropriate assumptions, our framework

applies the compositional rule in an iterative fashion as

illustrated in Fig. 4. At each iteration i, an assumption

Ai is provided based on some knowledge about the sys-
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+ counterexample

<P>M 1A i< >

(Step 2) <true> 2M A i< >

A i

Analysis

counterexample − weaken assumption

counterexample − strengthen assumption

Assumption

Model checking

false

true
true

Generation
Assumption

false
2|| M1M

2|| M1M satisfies P

does not satisfy P

(Step 1)

Fig. 4. Incremental compositional verification during iteration i

tem and on the results of the previous iteration. The two

steps of the compositional rule are then applied. Step 1

is applied first, to check whether M1 guarantees P in en-

vironments that satisfy Ai. If the result is false, it means

that this assumption is too weak, i.e., Ai does not restrict

the environment enough for P to be satisfied. The as-

sumption therefore needs to be strengthened (which cor-

responds to removing behaviors from it) with the help of

the counterexample produced by Step 1. In the context

of the next assumption Ai+1, component M1 should at

least not exhibit the violating behavior reflected by this

counterexample.

If Step 1 returns true, it means that Ai is strong

enough for the property to be satisfied. To complete the

proof, Step 2 must be applied to discharge Ai on M2. If

Step 2 returns true, then the compositional rule guar-

antees that P holds in M1 ‖ M2. If it returns false, fur-

ther analysis is required to identify whether P is indeed

violated in M1 ‖ M2 or whether Ai is stronger than

necessary. Such analysis is based on the counterexample

returned by Step 2. If Ai is too strong it must be weak-

ened (i.e., behaviors must be added) in iteration i + 1.

The result of such weakening will be that at least the

behavior that the counterexample represents will be al-

lowed by assumption Ai+1. The new assumption may

of course be too weak, and therefore the entire process

must be repeated.

To implement this iterative, incremental process in a

fully automated way, our framework uses a learning al-

gorithm for assumption generation and a model checker

for the application of the two steps in the compositional

rule. The learning algorithm is described in detail in the

next section.

4 Algorithms

4.1 The L* Algorithm

The learning algorithm used by our approach was de-

veloped by Angluin [3] and later improved by Rivest

and Schapire [31]. In this paper, we will refer to the im-

proved version by the name of the original algorithm, L*.

L* learns an unknown regular language and produces a
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DFA that accepts it. Let U be an unknown regular lan-

guage over some alphabet Σ. L* works by incrementally

producing a sequence of candidate DFAs converging to

the minimal DFA that accepts U . In order to learn U ,

L* needs to interact with a Minimally Adequate Teacher,

from now on called Teacher. A Teacher must be able to

correctly answer two types of questions from L*. The

first type is a membership query, consisting of a string

σ ∈ Σ∗; the answer is true if σ ∈ U , and false otherwise.

The second type of question is a conjecture, in which

L* gives to the Teacher a DFA C whose language it be-

lieves to be identical to U . The Teacher answers true if

L (C) = U . Otherwise the Teacher returns a counterex-

ample, which is a string σ in the symmetric difference of

L (C) and U .

At a higher level, L* creates a table where it incre-

mentally records whether strings in Σ∗ belong to U . It

does this by making membership queries to the Teacher.

At various stages L* decides to make a conjecture. It

constructs a candidate automaton C based on the in-

formation contained in the table and asks the Teacher

whether the conjectured automaton is correct. If it is,

the algorithm terminates. Otherwise, L* uses the coun-

terexample returned by the Teacher to extend the table

with strings that witness differences between L (C) and

U .

In the following more detailed presentation of the al-

gorithm, line numbers refer to L*’s illustration in Fig. 5.

L* builds an observation table (S,E, T ) where S and E

are a set of prefixes and suffixes, respectively, both over

Σ∗. In addition, T is a function mapping (S ∪ S ·Σ) ·E

to {true, false}, where the operator “·” is defined as

follows. Given two sets of event sequences P and Q,

P ·Q = {pq | p ∈ P and q ∈ Q}, where pq represents the

concatenation of the event sequences p and q. Initially,

L* sets S and E to {λ} (line 1), where λ represents the

empty string. Subsequently, it updates the function T

by making membership queries so that it has a mapping

for every string in (S ∪ S ·Σ) ·E (line 2). It then checks

whether the observation table is closed, i.e., whether

∀s ∈ S,∀a ∈ Σ,∃s′ ∈ S,∀e ∈ E : T (sae) = T (s′e)

If (S,E, T ) is not closed, then sa is added to S where

s ∈ S and a ∈ Σ are the elements for which there is no

s′ ∈ S (line 3). Once sa has been added to S, T needs

to be updated (line 4). Lines 3 and 4 are repeated until

(S,E, T ) is closed.

Once the observation table is closed, a candidate

DFA C = 〈Q,αC, δ, q0, F 〉 is constructed (line 5), with

states Q = S, initial state q0 = λ, and alphabet αC = Σ,

where Σ is the alphabet of the unknown language U . The

set F consists of the states s ∈ S such that T (s) = true.

The transition relation δ is defined as δ(s, a) = s′ where

∀e ∈ E : T (sae) = T (s′e). Such an s′ is guaranteed to

exist when (S,E, T ) is closed. Next, L* conjectures that

C is correct (line 6). If the conjectured automaton is cor-

rect, i.e., if L (C) = U , L* returns C as correct (line 7),
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(1) let S = E = {λ}

loop {

(2) update T using queries

while (S, E, T ) is not closed {

(3) add sa to S to make S closed where s ∈ S and a ∈ Σ

(4) update T using queries

}

(5) construct candidate DFA C from (S, E, T )

(6) conjecture that C is correct

(7) if C is correct return C

else

(8) add e ∈ Σ∗ that witnesses the counterexample to E

}

Fig. 5. The L* Algorithm

otherwise it receives a counterexample c ∈ Σ∗ from the

Teacher.

The counterexample c is analyzed by L* to find a

suffix e of c that witnesses a difference between L (C)

and U ; e must be such that adding it to E will cause the

next conjectured automaton to reflect this difference2

(line 8). Once e has been added to E, L* iterates the

entire process by looping around to line 2.

4.1.1 Characteristics of L*

L* is guaranteed to terminate with a minimal automa-

ton M for the unknown language U . Moreover, for each

closed observation table (S,E, T ), the candidate DFA

2 The procedure for finding e is beyond the scope of this paper,

but is described in [31].

C that L* constructs is smallest, in the sense that any

other DFA consistent3 with the function T has at least

as many states as C. This characteristic of L* makes

it particularly attractive for our framework. Our frame-

work uses L* to generate assumptions that are then used

by a model checker to apply the two steps of the com-

positional rule. Therefore smaller assumptions may con-

tribute to smaller state spaces. The conjectures made

by L* strictly increase in size; each conjecture is smaller

than the next one, and all incorrect conjectures are

smaller than M . Therefore, if M has n states, L* makes

at most n−1 incorrect conjectures. The number of mem-

bership queries made by L* is O (
kn2 + n log m

)
, where

3 A DFA C is consistent with function T if, for every σ in (S ∪

S · Σ) · E, σ ∈ L (C) if and only if T (σ) = true.



10 Jamieson M. Cobleigh et al.: A Learning Framework for Automatic Assume-Guarantee Verification

k is the size of the alphabet of U , n is the number of

states in the minimal DFA for U , and m is the length of

the longest counterexample returned when a conjecture

is made.

4.2 Learning for Assume-Guarantee Reasoning

Assume a system M1 ‖ M2, and a property P that needs

to be satisfied in the system. In the context of the com-

positional rule presented in Section 3, the learning algo-

rithm is called to guess an assumption that can be used

in the rule to prove or disprove P . An assumption with

which the rule is guaranteed to return conclusive results

is the weakest assumption Aw under which M1 satisfies

P . Assumption Aw describes exactly those traces over

Σ = (αM1 ∪ αP ) ∩ αM2 in the context of which M1

satisfies P . Intuitively, Aw is similar to a controller (the

most general one) in the context of which M1 satisfies

P . The language L (Aw) of the assumption contains at

least all traces of M2 abstracted to Σ that prevent M1

from violating P . Formally [18], Aw is such that, for any

environment component ME :

〈true〉 M1 ‖ ME 〈P 〉 if and only if 〈true〉 ME 〈Aw〉

In our framework, L* learns the traces of Aw through

the iterative process described in Section 3. The process

terminates as soon as compositional verification returns

conclusive results, which is often before the weakest as-

sumption Aw is computed by L*. For L* to learn Aw, we

need to provide a Teacher that is able to answer the two

different kinds of questions that L* asks. Our approach

uses model checking to implement such a Teacher.

4.2.1 Membership Queries

To answer a membership query for σ = 〈a1, a2, . . . , an〉

in Σ∗ the Teacher simulates the query on M1 ‖ Perr. For

clarity of presentation we will reduce such simulations

to model checking, although we have implemented them

more efficiently, directly as simulations. So for string σ,

the Teacher first builds Aσ = 〈Q,αAσ, δ, q0〉 where Q =

{q0, q1, . . . , qn}, αAσ = Σ, δ = {(qi, ai+1, qi+1) | 0 ≤

i < n}, and q0 = q0. The Teacher then model checks the

assume-guarantee triple 〈Aσ〉 M1 〈P 〉, as described in

section 2.5. If true is returned, it means that σ ∈ L (Aw),

because M1 does not violate P in the context of σ, so

the Teacher returns true. Otherwise, the answer to the

membership query is false.

4.2.2 Conjectures

Due to the fact that in our case the language L (Aw)

that is being learned is prefix-closed, all conjectured au-

tomata returned by L* are also prefix-closed. Our frame-

work transforms these conjectured automata into safety

LTSs (see Section 2), which constitute the intermediate

assumptions Ai. In our framework, the first priority is to

guide L* towards an assumption that is strong enough to

make Step 1 of the compositional rule return true. Once

this is accomplished, the resulting assumption may be

too strong, in which case our framework guides L* to-
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wards an assumption that is weak enough to make Step 2

return conclusive results about whether the system sat-

isfies P . The way the Teacher that we have implemented

reflects this approach is by using two oracles and coun-

terexample analysis to answer conjectures as follows.

Oracle 1 performs Step 1 in Fig. 4, i.e., it checks

〈Ai〉 M1 〈P 〉. If this does not hold, the model checker

returns a counterexample c and the Teacher informs

L* that the conjectured automaton Ai is not correct

and provides c � Σ to witness this fact. If, instead,

〈Ai〉 M1 〈P 〉 holds, the Teacher forwards Ai to Oracle 2.

Oracle 2 performs Step 2 in Fig. 4 by checking

〈true〉 M2 〈Ai〉. If the result of model checking is true,

our framework terminates the verification. Ai may not

be the weakest assumption, but since, according to the

compositional rule, P has been proved on M1 ‖ M2, it is

not necessary to continue the learning process. On the

other hand, if model checking returns a counterexample,

the Teacher performs some analysis to determine the un-

derlying reason (see Section 3 and Fig. 4).

Counterexample analysis is performed by the Teacher

in a way similar to that used for answering member-

ship queries. Let c be the counterexample returned

by Oracle 2. The Teacher computes Ac�Σ and checks

〈Ac�Σ〉 M1 〈P 〉. If true, the Teacher returns false; al-

though Ai is strong enough to prevent M1 from vio-

lating the property, it is actually too strong, since M1

does not violate P in the context of c, and the Teacher

returns c � Σ as a counterexample for the conjec-

tured assumption Ai. If the model checker returns false

with some counterexample c′, it means that P is vio-

lated in M1 ‖ M2. To generate a counterexample for

〈true〉 M1 ‖ M2 〈P 〉 our framework composes c and c′

in a way similar to the parallel composition of LTSs:

common actions in c and c′ are synchronized and some

interleaving instance of the remaining actions is selected.

4.3 Example

Given components Input and Output as shown in Fig. 1

and the property Order shown in Fig. 2, we will check

〈true〉 Input ‖ Output 〈Order〉 by using our approach.

The alphabet of the assumptions that will be used in

the compositional rule is Σ = ((αInput ∪ αOrder) ∩

αOutput) = {send, output, ack}.

As described, at each iteration L* updates its ob-

servation table and produces a candidate assumption

whenever the table becomes closed. The first closed ta-

ble obtained is shown in Table 1 and its associated as-

sumption, A1, is shown in Fig. 6. The Teacher answers

this conjecture by first invoking Oracle 1, which checks

〈A1〉 Input 〈Order〉. Oracle 1 returns false, with coun-

terexample σ = 〈input, send, ack, input〉, which de-

scribes a trace in A1 ‖ Input ‖ Ordererr that leads to

state π.

The Teacher therefore returns counterexample σ �

Σ = 〈send, ack〉 to L*, which uses queries to update

its observation table until it is closed. From this table,

shown in Table 2, the assumption A2, shown in Fig. 7, is
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Table 1. Mapping T1

E1

T1 λ

S1 λ true

output false

ack true

output false

S1 · Σ send true

output, ack false

output, output false

output, send false

Table 2. Mapping T2

E2

T2 λ ack

λ true true

S2 output false false

send true false

ack true true

output false false

send true false

output, ack false false

S2 · Σ output, output false false

output, send false false

send, ack false false

send, output true true

send, send true true

0 send
ack

output
send

0 ack 1

send

ack send

send

0 1
output

ack
output
send

2
sendack

send

0 1 2

ack

outputsend

3

ack
output
send

Fig. 6. A1 Fig. 7. A2 Fig. 8. A3 Fig. 9. A4

constructed and conjectured to the Teacher. This time,

Oracle 1 reports that 〈A2〉 Input 〈Order〉 is true, mean-

ing the assumption is not too weak. The Teacher calls

Oracle 2 to determine if 〈true〉 Output 〈A2〉. This is

also true, so our algorithm reports that 〈true〉 Input ‖

Output 〈Order〉 holds.

This example did not involve weakening of the as-

sumptions produced by L*, since the assumption A2 was

sufficient for the compositional proof. This will not al-
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ways be the case. For example, let us substitute Output

by Output′ illustrated in Fig. 3, which allows multi-

ple send actions to occur before producing output.

The verification process will be identical to the pre-

vious case, until Oracle 2 is invoked by the Teacher

when it conjectures that A2 is correct. Oracle 2 returns

that 〈true〉 Output′ 〈A2〉 is false, with counterexample

〈send, send, output〉. The Teacher analyzes this coun-

terexample and determines that in the context of this

trace, Input does not violate Order. The trace is re-

turned to L*, which will weaken the conjectured assump-

tion. The process involves two more iterations, during

which assumptions A3 (Fig. 8) and A4 (Fig. 9), are con-

jectured. Using A4, which is the weakest assumption Aw,

both Oracles report true, so our framework reports that

〈true〉 Input ‖ Output′ 〈Order〉 holds.

5 Discussion

5.1 Correctness and Termination

Lemma 1. The Teacher in our framework correctly an-

swers L* membership queries and conjectures for the lan-

guage of the weakest assumption L (Aw).

Proof. The language of Aw describes exactly those

traces σ over Σ = (αM1 ∪ αP ) ∩ αM2 in the context of

which M1 satisfies P , i.e. for which 〈Aσ〉 M1 〈P 〉 holds.

As mentioned, the Teacher answers membership

queries by checking 〈Aσ〉 M1 〈P 〉 and therefore it an-

swers them correctly.

Our framework only uses false answers to the conjec-

tures presented to the Teacher, and we therefore argue

correctness only in terms of negative replies. We will

show that whenever the Teacher replies false to con-

jectures, it does this correctly. There are two instances

where the Teacher replies false:

1. When Oracle 1 finds that 〈Ai〉 M1 〈P 〉 is false. By

definition, 〈Aw〉 M1 〈P 〉 holds, and therefore Ai can

not be Aw.

2. During counterexample analysis, when for the coun-

terxample c produced by Oracle 2, 〈Ac�Σ〉 M1 〈P 〉

holds. Therefore, by the definition of the language of

Aw, c � Σ ∈ L (A)w. However, based on Step 2 as

performed by Oracle 2, c is a trace in M2 such that

c � Σ does not belong to L (Ai). As a result, c � Σ is

a trace in L (Aw) that is not in L (Ai).

�

Theorem 1. Given components M1 and M2, and prop-

erty P , the algorithm implemented by our framework ter-

minates and it returns true if P holds on M1 ‖ M2 and

false otherwise.

Proof. To prove the theorem we will first argue correct-

ness and then termination of our approach.

Correctness: Our framework only returns true when

both steps of the compositional rule return true, and

therefore correctness is guaranteed by the compositional

rule. Our framework reports an error when it detects a
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trace σ of M2 which, when simulated on M1, violates the

property, which implies that M1 ‖ M2 violates P .

Termination: At any iteration, our algorithm returns

true or false and terminates, or continues by providing

a counterexample to L*. By correctness of L* and from

Lemma 1, we are guaranteed that if it keeps receiving

counterexamples, it will eventually, at some iteration i,

produce Aw. During this iteration, Step 1 will return

true by definition of Aw. The Teacher will therefore ap-

ply Step 2, which will return either true and terminate,

or a counterexample. This counterexample represents a

trace of M2 that is not contained in L(Aw). Since, as dis-

cussed in Section 4, Aw is both necessary and sufficient,

analysis of the counterexample will return false, and the

algorithm will terminate. �

5.2 Practical Considerations

In our context, the languages queried by L* are prefix-

closed. This is because our technique applies to purely

safety properties; any finite prefix of a trace that sat-

isfies such a property must also satisfy the property.

Therefore, when for some string σ a membership query

〈Aσ〉 M1 〈P 〉 returns false, we know that for any exten-

sion of σ the answer will also be false. We can thus im-

prove the efficiency of the algorithm by reducing the cost

of some of the membership queries that are answered

by the Teacher. For example, in the observation table

shown in Table 1, the entry for 〈output〉 is false. The

Teacher can return false for the queries 〈output, ack〉,

〈output, send〉, and 〈output, output〉 without invoking

the model checker.

In our framework, membership queries, conjectures,

and counterexample analysis all involve model check-

ing, which is performed on-the-fly. The assumptions that

are used in these steps are increasing in size, and grow

no larger than the size of Aw, i.e. |Ai| < |Ai+1| and

|Ai| ≤ |Aw|. However, we should note that there is no

monotonicity at the semantic level, i.e. it is not neces-

sarily the case that L (Ai) ⊆ L (Ai+1). This is the rea-

son why our framework requires both strengthening and

weakening of the assumptions.

In our experience, for well-designed systems, the in-

terfaces between components are small. Therefore, as-

sumptions are expected to be significantly smaller than

the environment that they represent in the composi-

tional rules. Moreover, the controllability information

that we use to derive these assumptions, and the fact

that we take the properties into account in building

them, typically allow us to achieve further reduction

than abstraction techniques that would merely simplify

models based on component interfaces. Although L*

needs to maintain an observation table, this table does

not need to be kept in memory while the model checking

is performed.

Note that our framework provides an anytime ap-

proach [13] to compositional verification. If memory is

not sufficient to reach termination, intermediate assump-

tions are generated, which may be useful in approximat-
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ing the requirements that a component places on its en-

vironment to satisfy certain properties.

6 Experience

We implemented the assume-guarantee framework de-

scribed above in the LTSA tool. In this section, we will

describe its application to the analysis of a design-level

model of the executive subsystem for the K9 Mars Rover

controller developed at NASA Ames.

6.1 K9 Mars Rover Executive

The executive receives flexible plans from a planner,

which it executes according to the plan language seman-

tics. A plan is a hierarchical structure of actions that

the Rover must perform. Traditionally, plans are deter-

ministic sequences of actions. However, increased Rover

autonomy requires added flexibility. The plan language

therefore allows for branching based on state or temporal

conditions that need to be checked, and also for flexibil-

ity with respect to the starting time of an action. The

plan language allows the association of each action with

a number of state or temporal pre-, maintenance, and

post-conditions, which must hold before, during, and on

completion of the action execution, respectively.

The executive has been implemented as a multi-

threaded system (see Fig. 10), made up of a main co-

ordinating component named Executive, components for

monitoring the state conditions ExecCondChecker, and

temporal conditions ExecTimerChecker – each further

decomposed into two threads – and finally an ActionEx-

ecution thread that is responsible for issuing the com-

mands to the Rover. Synchronization between these

threads is performed through mutexes and condition

variables.

In their description of the system design, the develop-

ers explicitly communicated to us their intentions as to

which mutexes were to protect accesses to which shared

variables. They also provided some design documents

that described the synchronization between components

in an ad-hoc flowchart-style language. The descriptions

looked very much like LTSs, which allowed us to trans-

late them in a straightforward and systematic, albeit

manual, way into the input language of the LTSA.

The first properties that we checked on the model

thus created was whether each access to a shared vari-

able between threads was protected by the appropriate

mutex. We then proceeded to a more elaborate coordina-

tion property that was provided to us by the developers,

the verification of which we describe in detail in this sec-

tion. The property refers to a subsystem of the executive

consisting of the Executive and the ExecCondChecker,

and states the following (see Fig. 10):

“for the variable savedWakeUpStruct of the Ex-

ecCondChecker shared with the Executive, if the

Executive reads the value of the variable, then the
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(state of system)

savedWakeUpStruct

conditionSetChanged

Internal

DbMonitor

Executive
ActionExecution

ExecTimerChecker

ExecCondChecker

Rover

subsystem analyzed

Planner

Database

Fig. 10. The Executive of the K9 Mars Rover

ExecCondChecker should not read this value be-

fore the Executive clears it first.”

6.2 K9 Rover Analysis

For compositional verification of the above property, we

set M1 = ExecCondChecker and M2 = Executive. We

compared the performance of our learning framework to

two alternative approaches for checking this property.

The first is what we call the “monolithic” approach; this

is the standard non-compositional approach that checks

the property on Executive ‖ ExecCondChecker. The sec-

ond approach [18] is compositional but not iterative. It

is also based on the simple compositional rule presented

in Section 3. It first generates the weakest assumption

Aw for Step 1 of the rule to be true, and then applies

Step 2 of the rule, i.e. it discharges the assumption. The

construction of the weakest assumption is performed in

three stages during which several transformations are

applied to M1 ‖ Perr.

The experiment was conducted on an Apple G4

867 MHz with 384 Mb of memory running OS X 10.3

using Java SDK version 1.4.1 01. We report the follow-

ing results. For the learning framework, we describe the

size (in terms of numbers of states) of the candidate as-

sumptions that it generates, as well as the size (in terms

of number of states and transitions) of the state space

that each oracle needs to explore. The three approaches

are then compared in terms of the total time needed to

perform the verification and the size of the largest state

space explored. For the learning framework, this is the

largest state space among the ones that are explored

by the oracles. For the approach based on the weakest

assumption, this is the largest state space between 1)

M1 ‖ Perr that needs to be explored for the generation



Jamieson M. Cobleigh et al.: A Learning Framework for Automatic Assume-Guarantee Verification 17

Table 3. Results of Learning for the Rover Example

Iteration |Ai| States Transitions Result

1 - Oracle 1 1 294 1, 548 Not too weak

1 - Oracle 2 1 16 93 Too strong

2 - Oracle 1 2 269 1, 560 Too weak

3 - Oracle 1 3 541 3,066 Too weak

4 - Oracle 1 5 12 69 Too weak

5 - Oracle 1 6 474 2, 706 Not too weak

5 - Oracle 2 6 32 197 Property does not hold

Table 4. Comparison of Approaches for the Rover Example

Approach |A| Max. States Max. Transitions Time (s)

Monolithic N/A 3, 630 34, 653 0.677

Generate and Discharge Aw 6 588 4, 272 101.574

Learning 6 541 3, 066 6.696

of the assumption, and 2) the state space that is explored

by the discharge of the assumption.

The results of the learning framework are illustrated

in Table 3. The |Ai| column gives the number of states

of the assumptions generated. The entries in the States

and Transitions columns that are in bold face indicate

the maximum value for those columns. The table also

shows the number of states and transitions explored dur-

ing the analysis of the assumption. In iteration 1, Ora-

cle 1 determined that the conjectured assumption was

not too weak, so the conjectured assumption was given

to Oracle 2, which returned a counterexample. When

simulated on the ExecCondChecker, this counterexam-

ple did not lead to an error state, indicating that the

conjectured assumption was too strong. In iterations 2-

4, Oracle 1 determined that the conjectured assumption

was too weak. In iteration 5, the conjectured assumption

was not too weak and given to Oracle 2, which returned

a counterexample. This counterexample, when simulated

on the ExecCondChecker, led to an error state. The anal-

ysis therefore concluded that the property does not hold.

The largest state space involved in the application

of our approach was explored by Oracle 1 during itera-

tion 3, and consisted of 541 states and 3,066 transitions.

Running the learning algorithm required 6.696 seconds.

Table 4 gives the results of the learning framework as

compared to the other two approaches we tried. For the

two compositional approaches, the table gives the size of
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the assumption used to show that the property does not

hold. Both compositional approaches explore almost an

order of magnitude fewer states and transitions than the

monolithic approach, with the learning approach per-

forming slightly better. However, the two compositional

approaches take longer than the monolithic approach,

with the learning framework requiring less time than the

one that generates and discharges Aw
4.

6.3 Corrected Rover

The analysis performed on the Rover uncovered an er-

ror in its design. The counterexample obtained described

a scenario where, after reading savedWakeUpStruct and

before clearing it, the Executive would perform a wait

that released the mutex associated with savedWakeUp-

Struct. It is then possible for the ExecCondChecker to

read the same value, and thus violate the property. We

corrected this problem by getting the Executive to clear

savedWakeUpStruct before releasing the mutex.

To make sure that the change we applied corrects

the problem, we verified the subsystem again. Table 5

and Table 6 give the results obtained for the corrected

Rover. The performance of the three approaches on the

corrected Rover is similar to their performance on the

buggy Rover. Again, the compositional approaches ex-

plored fewer states and transitions than the monolithic

approach, but required more time, with the learning

4 Generating Aw took most of the time, requiring 99.719 sec-

onds.

framework performing better than the one that gener-

ates and dischargesAw.

In the above experiments, the compositional ap-

proaches outperform the monolithic approach in terms

of sizes of state spaces that they need to explore, but

are outperformed in terms of the time consumed in car-

rying out the verification. For the learning framework,

the latter is due to the iterative learning of assumptions.

For the approach based on generating the weakest as-

sumption, it is due to a minimization step involved in

the assumption generation process.

In general, we believe that the potential benefits of

our approach in terms of memory outweigh the time

overhead that it may incur. Space complexity is the ma-

jor concern in model checking, so approaches that pro-

vide automated support for decomposing a model check-

ing problem into smaller ones (in terms of space) are

crucial for achieving the verification of realistically-sized

systems.

7 Extensions

7.1 Starting with a supplied assumption

Determining an assumption to complete an assume-

guarantee proof can be a difficult task. The framework

presented learns an assumption to complete an assume-

guarantee proof automatically with no input from the

analyst. However, analysts typically have knowledge

about the system they are verifying and can use this
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Table 5. Results of Learning for the Corrected Rover Example

Iteration |Ai| States Transitions Result

1 - Oracle 1 1 294 1, 548 Not too weak

1 - Oracle 2 1 15 90 Too strong

2 - Oracle 1 2 269 1, 560 Too weak

3 - Oracle 1 3 541 3,066 Too weak

4 - Oracle 1 5 12 69 Too weak

5 - Oracle 1 6 474 2, 706 Not too weak

5 - Oracle 2 6 105 653 Property holds

Table 6. Comparison of Approaches for the Corrected Rover Example

Approach |A| Max. States Max. Transitions Time (s)

Monolithic N/A 4, 672 44, 464 0.574

Generate and Discharge Aw 6 588 4, 272 100.034

Learning 6 541 3, 066 6.044

knowledge to formulate assumptions. If we can adapt

our algorithms to make use of these analyst-supplied as-

sumptions, we should be able to improve the efficiency

of our approach.

For example, consider the case where an analyst has

developed an assumption A1, that he or she believes to

be correct. In this case, the first thing that needs to

be checked is if M2 |= A1. If this is false, then the as-

sumption supplied by the analyst is incorrect, and this

should be reported. If M2 |= A1, then the next thing to

be checked is if M1 ‖ A1 |= P . If this is true, then the

assumption A1 is correct and sufficient to complete the

assume-guarantee proof. Otherwise, the assumption A1

is not sufficient, and our learning algorithm can be used

to learn an assumption A2 such that 〈A2〉 M1 ‖ A1 〈P 〉

and 〈true〉 M2 〈A2〉.

As mentioned earlier, for the Rover executive the de-

velopers expressed to us their intentions as to which mu-

texes were to protect accesses to which shared variables.

In the analysis of the Rover we can therefore introduce

an assumption stating that the Executive only accesses

savedWakeUpStruct when it holds the appropriate mu-

tex. We repeated the verification experiments with this

additional assumption, the results of which are shown in

Tables 7 and 8. The additional assumption is not intro-

duced in the monolithic approach since the behavior of

both components is already included. For the composi-

tional approaches we had to also show that the Executive
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Table 7. Results of Learning for the Corrected Rover Example with Additional Assumption

Iteration |Ai| States Transitions Result

1 - Oracle 1 1 5 24 Too weak

2 - Oracle 1 2 268 1, 408 Too weak

3 - Oracle 1 3 235 1, 209 Too weak

4 - Oracle 1 5 464 2,500 Not too weak

4 - Oracle 2 5 97 609 Property holds

Table 8. Comparison of Approaches for the Corrected Rover Example with Additional Assumption

Approach |A| Max. States Max. Transitions Time (s)

Monolithic N/A 4, 672 44, 464 0.677

Generate and Discharge Aw 6 544 3, 082 19.139

Learning 5 464 2, 500 4.575

Discharge Additional Assumption 2 41 252 0.332

actually satisfies the additional assumption. The cost of

this step is reported in the last row of Table 8.

Using this additional assumption improved the per-

formance of both compositional approaches, particularly

the running time of generating Aw, which now required

18.790 seconds compared to 99.719 seconds without the

additional assumption. As before, the compositional ap-

proaches explore fewer states and transitions than the

monolithic approach, but require more time, with the

learning approach performing better than the approach

the generates and then discharges Aw.

In the Rover case study, the use of an assumption

provided by the developer/analyst improved the perfor-

mance of the learning algorithm. However, we do not

always expect that the analyst will be able to supply an

assumption A1 such that M2 |= A1. The approach pre-

sented above cannot deal with this case. The assump-

tion A1 might encode behavior the analyst believes to

be true, so, even if it is incorrect, it should provide a

reasonable starting point for learning a correct assump-

tion. To address this, we could adapt the approach pre-

sented by Groce et al. in [19], which improves the L*

learning algorithm by using a (possibly incorrect) sup-

plied automaton to complete initial values for the sets S

and E. In the experiments from [19], their approach was

shown to save both time and memory over starting with

S = E = {λ}. However, their work uses the Angluin ver-

sion of L* rather than the Rivest and Schapire version.

We wish to investigate if we could obtain similar benefits

in our framework, especially since we use the Rivest and
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Shapire version, which has better worst-case complexity

than the Angluin version.

7.2 Generalization

Our approach has been presented in the context of two

components. Assume now that a system consists of n

components M1 ‖ · · · ‖ Mn. The simplest way to gener-

alize our approach is to group these components into two

higher level components, and apply the compositional

rules as already discussed. Another possibility is to han-

dle the general case without computing the composition

of any components directly. Our algorithm provides a

way of checking 〈true〉 M1 ‖ M2 〈P 〉 in a compositional

way. If M2 consists of more than one component, our

algorithm could be applied recursively for Step 2. This

is an interesting future direction, in particular since the

membership queries concentrate on a single component

at a time. However, we need to further investigate how

meaningful such an approach would be in practice.

7.3 Computing the Weakest Assumption

L* can also be used to learn the weakest possible as-

sumption Aw that will prevent a component M1 from

violating a property P . This assumption will be gener-

ated without knowing M2, the component M1 interacts

with. The only place in our assume-guarantee framework

where M2 is used is in Oracle 2, when the Teacher tries

to determine if the Assumption generated is too strong.

Oracle 2 can be replaced by a conformance checker, for

send0 ack 1

input

ack

Fig. 11. A5

example the W-Method [8], which is designed to expose

a difference between a specification and an implementa-

tion. This will produce a set of sequences that are guar-

anteed to expose an error in the conjectured assumption

if one exists. The sequence of intermediate assumptions

conjectured by the Teacher are approximate and become

more refined the longer L* runs.

The W-Method is an exponential algorithm. As a re-

sult, we would expect this approach to be used only when

other approaches to assumption generation, such as [18],

run out of memory. Additionally, the execution of one of

the algorithm’s loops requires knowledge about the size

of M1, resulting in a very expensive computation. How-

ever, this is still an anytime algorithm and can be used

to generate a sequence of approximate assumptions.

7.4 Symmetric rules

The assume-guarantee rule that we use in our framework

is not symmetric in its use of the two components. This

fact makes our framework sensitive to the order in which

the components are checked.

Consider again the example from Section 4.3, where

the Output component is replaced by Output’. For the

case were M1 = Input, M2 = Output′, and P = Order,
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our learning framework concludes that 〈true〉 Input ‖

Output′ 〈Order〉 holds and it produces the assumption

A4, shown in Fig. 9. If we change the order in which the

two components are considered by our learning frame-

work, i.e. we set M1 = Output′ and M2 = Input,

then the framework again concludes that 〈true〉 Input ‖

Output′ 〈Order〉 holds and it produces the (final) as-

sumption A5, shown in Fig. 11. This assumption is ob-

tained after just two (rather than 4) iterations and is

smaller than A4. Therefore, how LTS components of a

system get assigned to M1 and M2 can have a significant

impact on the efficiency of the learning algorithm.

Several other assume-guarantee rules exist in the

literature that are symmetric and involve circularity,

e.g., [5]. Symmetric rules use assumptions for each com-

ponent of the system. We are interested in incorporat-

ing such rules into our framework, as we expect that

their use will lead to earlier termination of the iterative

process and to even smaller assumptions; we have done

preliminary work in this direction [4].

8 Related Work

One way of addressing both the design and verifica-

tion of large systems is to use their natural decompo-

sition into components. Formal techniques for support

of component-based design are gaining prominence, see

for example [11, 12]. In order to reason formally about

components in isolation, some form of assumption (ei-

ther implicit or explicit) about the interaction with, or

interference from, the environment has to be made. Even

though we have sound and complete reasoning systems

for assume-guarantee reasoning, see for example [9, 20,

25, 30, 33], it is always a mental challenge to obtain the

most appropriate assumption [22].

It is even more of a challenge to find automated tech-

niques to support this style of reasoning. The thread

modular reasoning underlying the Calvin tool [15] is

one start in this direction. In the framework of tempo-

ral logic, the work on Alternating-time Temporal Logic

ATL [1] was proposed for the specification and verifica-

tion of open systems together with automated support

via symbolic model checking procedures. The Mocha

toolkit [2] provides support for modular verification of

components with requirement specifications based on the

ATL.

Recently, Henzinger et al. [21] have presented a

framework for thread-modular abstraction refinement,

in which assumptions and guarantees are both refined

in an iterative fashion. The framework applies to pro-

grams that communicate through shared variables, and,

unlike our approach where assumptions are controllers

of the component that is being analyzed, the assump-

tions in [21] are abstractions of the environment compo-

nents. The work of Flanagan and Qadeer also focuses on

a shared-memory communication model [16], but does

not address notions of abstractions as is done in [21] .

Jeffords and Heitmeyer use an invariant generation tool
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to generate invariants for components that can be used

to complete an assume-guarantee proof [24]. While their

proof rules are sound and complete, their invariant gen-

eration algorithm is not guaranteed to produce invari-

ants that will complete an assume-guarantee proof even

if such invariants exist.

In previous work [18], we presented an algorithm for

automatically generating the weakest possible assump-

tion for a component to satisfy a required property.

Although the motivation of that work is different, the

ability to generate the weakest assumption can also be

used to automate assume-guarantee reasoning. The al-

gorithm in [18] does not compute partial results, mean-

ing no assumption is obtained if the computation runs

out of memory. This may happen if the state space of

the component is too large. The approach presented here

generates assumptions incrementally and may terminate

before Aw is computed. Moreover, even if it runs out of

memory before reaching conclusive results, intermediate

assumptions may be used to give some indication to the

developer of the requirements that the component places

on its environment.

The problem of generating an assumption for a com-

ponent is similar to the problem of generating compo-

nent interfaces to deal with intermediate state explosion

in CRA. Several approaches have been defined for auto-

matically abstracting a component’s environment to ob-

tain interfaces [6, 26]. These approaches do not address

the issue of incrementally refining interfaces, as needed

for carrying out an assume-guarantee proof.

Learning in the context of model checking has also

been investigated in [19], but with a different goal. In

that work, the L* Algorithm is used to generate a model

of a software system which can then be fed to a model

checker. A conformance checker determines if the model

accurately describes the system.

9 Conclusions

Although theoretical frameworks for sound and complete

assume-guarantee reasoning have existed for decades,

their practical impact has been limited because they in-

volve non-trivial human interaction. In this paper, we

presented a novel approach to performing such reasoning

in a fully automatic fashion. Our approach uses a learn-

ing algorithm to generate and refine assumptions based

on queries and counterexamples, in an iterative process.

The process is guaranteed to terminate, and return true

if a property holds in a system, and a counterexample

otherwise. If memory is not sufficient to reach termi-

nation, intermediate assumptions are generated, which

may be useful in approximating the requirements that a

component places on its environment to satisfy certain

properties.

One advantage of our approach is its generality. It

relies on standard features of model checkers, and could

therefore easily be introduced in any such tool. For ex-
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ample, we are currently in the process of implement-

ing it in JPF for the analysis of Java code [32] and in

FLAVERS for the analysis of Ada code [14] and Java

code [29]. The architecture of our framework is modu-

lar, so its components can easily be substituted by more

efficient ones. To evaluate how useful our approach is in

practice, we are planning its extensive application to real

systems. However, our early experiments provide strong

evidence in favor of this line of research.

In the future, we plan to investigate a number of

topics including whether the learning algorithm can be

made more efficient in our context; whether different al-

gorithms would be more appropriate for generating the

assumptions; whether we could benefit by querying a

component and its environment at the same time or by

implementing more powerful compositional rules. An in-

teresting challenge will also be to extend the types of

properties that our framework can handle to include live-

ness, fairness, and timed properties.
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